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Abstract 

In this paper we study the time evolution of prepared states in some quantum mechanical 
models, and discuss the probability of decay and the rate of energy dissipation and their 
dependence on the form of  the interaction. First we consider solvable models with diver- 
gent matrix elements for the operator//2,  where H is the Hamiltonian of  the system. We 
study two specific examples, one with welt-deFined eigenvalues and the other with re- 
normalizable interaction. The time development of  the initial state in the latter case depends 
on the cut-off parameter. In the second part of the paper, we show the possibility of 
existence of decaying states with long lifetime, where the amplitude of the initial state 
decreases like a Bessel function. In the third part, we determine the time development of 
a prepared state in a simple many-boson problem. Finally we study the problem of pene- 
tration of a wave packet through two phase-equivalent potential barriers, and we conclude 
that from the scattering phase shifts alone, it is not possible to determine the lifetime or 
the mode of  decay of  an unstable particle uniquely. 

1. Introduction 

If the initial state of a system is not an eigenstate of the Hamiltonian, it 
decays after a sufficient period of time into a mixture of the eigenstates of the 
system. The process of preparing the initial quasi-stationary state and its sub- 
sequent decay can be regarded as a scattering problem, and thus the Hamiltonian 
for the whole system, which describes the system before and after the formation 
of the unstable state, determines the way that the prepared state decays. However, 
if this prepared state has a sufficiently long lifetime that experimental obser- 
vation may be made on it before its decay, the mode of formation becomes 
irrelevant, and the decay can be studied separately. While the relation of  the 
decay of  a quasi-stationary state to the scattering reaction by which the unstable 
state is prepared is important in some problems, we will, for simplicity, con- 
sider only those cases where the initial state has a sufficiently long lifetime. 
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The other simplification that we want to make is to exclude the measuring 
apparatus from the total system. The extent of validity of  this approximation 
is not dearly known at present. (For a detailed discussion of this subject the 
reader is referred to the papers of Ekstein and Siegert, 1971 and Fonda et al. 
1973). With these assumptions we can state the problem in the following way: 
The initial conditions in an experiment described quantum mechanically are 
represented as the eigenstates of the unperturbed Hamittonian. As a typical 
case, we assume that the system is prepared in a state Co(r) at t = 0, where 
C0(r) is an eigenfunction of the Hamiltonian without coupling. We may then 
ask what is the probability of finding the system in a definite state of the 
unperturbed Hamiltonian at a later time. But first we should investigate whether 
it is possible to prepare such a state as considered, since the initial state is not 
an eigen function of  the total ttamiltonian. To have a realizable initial state, 
both the expectation value of the I-Iamiltonian and the magnitude of the rate 
of change of the initial state wave function must be finite. If the latter quantity 
is infinite the initiai state ~bo(r) cannot be prepared, since it will change dis- 
continuously into some other state or set of states. But one is led, in some 
cases, to consider such a state as the initial state for the system. For instance, 
in the Wigner-Weisskopf model (Wigner and Weisskopf, 1930), and in Martin's 
relativistic Lee model (Martin, 1963), the absorption and reemission of particles 
take place at the origin, thus the interaction is a g-function in the coordinate 
space. Hence, in both models the matrix elements o f H  2 with the unperturbed 
wave functions are divergent quantities. 

We start in Section 2 by transforming the time-dependent Schr6dinger 
equation to a set of differential-difference equations for the coefficients of 
expansion (Cn(t)) of the exact wave function in terms of the eigenvalues of the 
unperturbed system. These coefficients are directly related to the decay prob- 
ability and the mean energy of the initial state. In Section 3 we discuss two 
models with 5-function interactions. For the first model we find a well defined 
eigenvalue equation (which, in fact, is identical to the eigenvalue equation in the 
Wigner-Weisskopf model), however, in the second model a cut-off is necessary 
to make the results finite. This renormalizable model is similar to the model 
ttamiltonian studied by Peres (Peres, 1969). In Section 4 we discuss the pro- 
blem of  the motion of  a particle in a periodic potential and show that, under 
certain conditions, a prepared state in this system decays as a zeroth order 
Bessel function. Thus, the time evolution of this system is similar to that of 
the classical loaded chain of infinite length (SchrSdinger 1914). In Section 5 
we first consider a coupled channel problem, which is essentially Martin's 
model. Then we study the time dependent solutions of the Bassichis-Foldy 
many boson system (Bassichis and Foldy, 1964). We show that when the 
number of particles in the system, N, becomes very large and the strength of 
the two-particle force, g, tends to zero so that gN remains finite, the differential- 
difference equations of motion can be simplified, and the resulting set of 
equations may be solved exactly with the help of  a fictitious Hamittonian. 
Finally, we observe that phase equivalent potentials do not have identical 
penetration factors for a given wave packet (Section 6). 
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2. Differential-Difference Equation for Expansion Coefficients 

The time-dependent Schr6dinger equation 

• a~(r, t) 
t ~ = H~(r, t) 

~t 

with the initial condition 

(2.1) 

¢(r, t = o) = ¢ o ( 0  (2.2) 

can be solved by taking the Fourier transform of every term in the equation 
(2.1) with respect to the variable t. The resulting eigenvalue equation 

He(r, E) = E•(r, E) (2.3) 

represents the stationary state solutions of the wave equation. If the charac- 
teristic functions of equation (2.3) are known and they are normalized 
according to the relation 

f •(r, E)**(r, E')d3r = 6(E-E') (2.4) 

then the solution of equation (2.1.) at time t can be expressed as a superposition 
of the stationary states 

~(r, t) = f Co(E)~(r, E)e-iEtdE (2.5) 

In this equation Co(E) is the coefficient of expansion of So(r) in terms o f 
¢(r, E) 

~bo(r ) = f Co(E)*(r, E) dE (2.6) 

The integrals in equation (2.5) and (2.6) extend over all possible eigenvalues 
of equation (2.3), if the spectrum of H is continuous. For systems having 
discrete eigenvalues, 6EE, replaces the 6-function in equation (2.4) and sum- 
mations over the eigenvalues take the place of integrals in equations (2.5) and 
(2.6). If we multiply equation (2.6) by •*(r, E) and integrate over the volume, 
then using equation (2.4) we find 

C(E) = f (~o (r) ~ *(r, E) d3r (2.7) 

Thus, the time-dependent wave function ~(r, t) can be written as 

$(r, t) = f d3r ' dESo(r')e-iEt ¢(r, E)$*(r', E) (2.8) 

In the case where $o(r)is a member of a complete set of functions Sm(r) 
satisfying the orthogonality condition 

f Sm(r)S*(r) d3r = 8ran (2.9) 

we can expand ~(r, t) and $(r, E) in terms of the set Sin(r) and determine the 
coefficients of expansion. Thus 

~J(r, t) = ~ Cm(t)(gm(r) (2.10) 
rn 
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,(r,E) = Y Cm(E)*m(r) (2.11) 
m 

By substituting equation (2.10) and (2.11) in equations (2.1), (2.8) and (2.4), 
we find the following relations for Cn: 
(a) The equation of motion can be written as 

tiC. (t) 
" = ~ t t n m C m ( t )  ( 2 . 1 2 )  

clt m 
where 

ltnm = f ¢Ur)11¢~ (r) dar (2.13) 

(b) The relation between Cn(t ) and Cn(E) is given by 

Cn(t) = f e-Urt C*o(E)Cn(E ) dE (2.14) 

(c) The normalization condition implies that 

~. Cm (R)C* (E') = 8 (E-E') (2. t 5) 
rn 

and finally, 
(d) The initial conditions follow from equation (2.10) 

Co(t=O)=l, Cm(t=O)=O m•O (2.16) 

The probability that the state ¢o(r) has not decayed at the time t is given by 
[Co(t) 12. In addition to [Co(t)12 there are two important quantities associated 
with the time evolution of  a quasi-stationary system. First is the initial decay 
rate, F, defined by the equation 

-- I< ~ (r, t) j~o(r) > I '~ (2.17) 
t=O t=O 

This quantity is closely related to the expectation value of  the Hamiltonian in 
the initial state, since we have 

J \at/t=o 

The second important quantity is the magnitude of the rate of change of the 
initial state wave function which is proportional to the expectation value of the 
square of  the Hamfltonian in the initial state; 

< @ofH21@o >= j'@*(r, 0)//2 V1(r, 0)dar = ] dC° 12 [ --~--/t=o (2.19) 
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From equations (2.18) and (2.19) it follows that 

-- (2.20) <¢°1H21~° > =  4 t=o 

For a decaying system < ¢o I H2 I~o > represents the rate of  energy dissipation 
at t = 0, while F is the mean energy of the initial state. Now, the Hamiltonian 
of the system can be represented either as an operator in the coordinate (or 
momentum) space, or in terms of  its matrix elements Hnm (2.13). In the latter 
form it is more convenient to work directly with the matrix equation (2.12), 
which for our solvable models reduces to differential-difference equations for 
Cm (t) with the initial conditions (2.16). The temporal development of  the 
initial state Co, gives us the wave function at any other time t. In the following 
sections we wiU consider solvable models with four different types of Hamilton- 
ians, which in the matrix representation can be written in the following forms: 

(a)Hnm =e(m) 6nm +gor(b)Hnm =e(m) 6nm +g(n +½) (2.21) 

Hnm = e(m)6nm + ig[n6m+l,n - m6m_l,n] (2.22) 

nnm = e(m)Snm + ig[6m+ x,n - 6m-l ,n] (2.23) 

and 
nnm = e(m)6nm + g(6onPm + Pn~Om) (2.24) 

In these relations g is the coupling constant and Pm is a given vector. The 
matrix Hnm given by (2.21b) is not symmetric, however it corresponds to a 
Hermitian Hamiltonian as will be shown in the following section. Alternatively 
one can change the state vector and write (2.21b) as a symmetric Hamiltonian 

1 l Hnm = e(m)6nm +g(n + ~)~ (m + ~ (2.25) 

3. Models with Divergent H 2 ~ 

We want to study two models in this section, both having divergent matrix 
elements for H 2 . But whereas in the first model the eigenvalues of the station- 
ary states are well defined, in the second model one needs to renormalize the 
coupling constant in order to get finite results. 

Let us consider the one-dimensional motion of a particle of mass m = 1, 
with the Hamiltonian 

02 
H = ~x 2 +g6(x) (3.1) 

and subject to the periodic boundary condition 

~O(x = L) = ~O(x = - L )  (3.2) 

If  the initial state of the particle is given by an eigenfunction of (-02/Ox2), 
e.g., if 

q~o(X) = 1 (3.3) 



242 M. RAZAVY 

then the set of functions 

~m(X)=(2L)-~exp(t-~) (3.4) 

can be used to expand the wave function ~(x, t) 

~(x,t)= ~ Cm(t) exp (3.5) 
m=-~  

The Hamiltonian (3.1) and the wave function (3.5) yield the following differen- 
tial equation for Cn(t) 

dC n ~'2n2 g +~* 
i dt  =-~-Cn(t)+L ~ Cm(t) (3.6) 

with the initial conditions that at t = O, 

Co =1 and Cn--O nv~O (3.7) 

Using the method of the previous section and writing 

Cn(t) = ~ Cn(E)C~(E)e -iEt (3.8) 
E 

we obtain the eigenvalue problem 
+ ~  

g 
Cm(E) (3.9) Cn(E) = L(E - ~r2n2 /L 2) m = - -  

Summing both sides of this equation over n, we find a transcendental equation 
for the eigenvalues which is very similar to the eigenvalue equation for the 
Wigner-Weisskopf model 

g-1 = E--~ cot(/? ½ L) (3.10) 

In order to construct the normalized eigenvectors, we divide Cn(E) (3.9) by 
Co(E), with the result that all Cn's can be related to Co; 

lr2n2~ -1 
Cn(E) = ECo(E) ~, - - ~  ] (3.1 1) 

k 

Now from equation (3.8) and the normalization condition, viz., 

Cn(E)C; ') = ~ EE' (3.12) 

it follows that 

ICn(t)[ z = ~ ICo(E)I 2 = 1 (3.13) 
n = - - ~  E 

Thus, to satisfy the initial conditions (3.7), we need to normalize Cn(E) 



TIME EVOLUTION OF QUASI-STATIONARY STATES 243 

according to (3.12) or use equation (3.13). We determine Co(E ) by substitu- 
ting (3.11) in (3.13) 

I Co(E)l 2 = (dA/dg) -~ (3.14) 

where 

A(E)=LE2[g -~ - E ~  cot (E -~ L)] (3.15) 

With the help of the function A(E) we can write Co(t ), equation (3.8) in terms 
of a contour integral (Haake and Weidlick, 1968; Razavy and Henley, t970) 

Co(t)= ~ ¢ [e-iZrtA(z)]dz (3.16) 

This integral is similar to the time evolution equation in the Wigner-Weisskopf 
model, and it can be evaluated approximately. The result indicates that the 
initial state C o decays exponentially into the other states Cn(t) (see, for instance, 
Haake and Weidlich, 1968). 

The model above corresponds to the Hamiltonian (2.21a). The second model 
with a Hamiltonian similar to (2.21b) is more interesting, since, if we apply 
the perturbation theory to calculate transition probabilities, we find that the 
first order term is well defined and finite, but the second and hidaer order 
terms are divergent. Thus the original Hamiltonian must be renormalized to 
insure the finiteness of the results to "all orders. This model is a one-dimensional 
quantum mechanical system. Let us consider a particle of mass ½ which is con- 
strained to move on a cylinder of radius L. The Hamiltonian describing the 
motion of the particle is given by 

1 1 3 (sin0~_~) ! ~ ( c o s 0 - 1 )  (3.17) 
H = - L2  sin 0 30 

where go is the strength of the potential. The resulting wave function of the 
time dependent Schr6dinger equation 

aft; 
i -T  =H~  (3.18) 

Ot 

can be expanded in terms of the Legendre polynomials 

~(0, t) = ~ Cl(t)Pl(cos O) (3.19) 
/=0 

By substituting (3.19) in (3.18) and using the orthogonality of the Legend_re 
polynomials we find a differential equation for Cm (t) 

dCm = m(m + go 
i d--t'- L 2 1)Cm + L (m +½) ~. C l (3.20) 

/=0 
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As before we solve this equation by Fourier transform method, equation (3.8), 
and we find that the eigenvectors satisfy the algebraic equation 

= ~ ( m + ~ )  • Ct (3.21) 
- L:  C,,  L l=o 

In the last term of this equation we have introduced a cut-off A (which is a 
large positive integer) to make the results finite. The equation for the charac- 
teristic values can be obtained in the same way as described earlier and it 
contains the cut-off A; 

A 
S g°Z(m + ½) 

EL: - m(m + 1) = 1 (3.22) 
m=o 

If the particular eigenvalue of equation (3.22)which we want to determine is 
close to l(I + 1)/L 2, where 1 is an integer, then we write 

A A 
1 l + ~ X-"  1 1 ~" '  EL 2 - ½m 

= ~ --+~-TT~r + go L EL 2 - l(l + 1) m 2L E m[EL-2----m(--m+ t)] 
r n = l  = 

(3.23) 

where the prime on ~ indicates that the term m = 1 is excluded from the sum. 
As A becomes very large, E'l /m approaches log A, and thus we get 

1 l + ~  
log A - finite terms (3.24) 

goL EL 2 - l ( l  + 1) 

From this relation we find E 

l(l + 1) + (l + ~)(go/L) 
E = - - ~  1 +goL(log A + finite terms) 

(3.25) 

Now if we assume that go L is very small, we can determine E by expanding 
the fight hand side of (3.25) in powers ofgoL. Thus 

l(l+ 1)+goq  + 1~ o2r l E= ~ -ff ~ ~) - ~o~. +~)[logA+finiteterms] (3.26) 

Equations (3.25) and (3.26) show that the radius of convergence of the pertur- 
bation series is (log A) -1 and tends to zero as A becomes very large. The 
normalized eigenvectors can be found from equation (3.21), and in particular 
ICo(E)I 2 is given by 

[ 2 0  (2m+1)2E2L42]- I  
tC'°12 = [EL 2 - m(m + 1)] (3.27) 
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If initially, all Cn's are zero except C o which is equal to one, then the time 
dependence of the state Co(t ) is determined by equation (3.8). Thus we can 
write 

_ e - i E t  

Co(t) -- ( 3 . 2 8 )  

where E 

D(E) = EZL 4 
(2m + 1) 2 

m=o (EL2 - m2 - m)2 

=E2L 2 2rr(1 +4EL )--~tan (1 +4EL )7 

+ ~r2/cos 2 1 + 4EL2) "~ (3.29) 

We note that (1 + 4EL2) U2 cannot be equal to an odd integer, a condition 
that follows from the solution of the eigenvalue equation (3.22). Also from 
the last equation it is evident that a cut-off is not necessary for calculating 
Co(E), however, equation (3.28) shows that Co(t) will not be a well defined 
function unless the cut-off A is introduced. We can renormalize the coupling 
constant g in the following way (Peres, 1969). Let us define g by the relation 

1 1 ~ 1 1 
. . . . . . . . . . .  + ~ -- = - -  + S(A) (3.30) 
gL go L m go L 

m = l  

and then solve for go 

go = g/1 -g[S(A)]  (3.31) 
The renormalized Hamiltonian can be written as 

I I  = L 2 gn O ~O sin0 +1 

It can be shown that the perturbation given by the last term in equation (3.32) 
yields finite results to all orders in g (Peres, 1969). 

4. Motion o f  a Particle in a Periodic Potential 

If  the initial state of a system is an eigenstate of the unperturbed Hamiltonian, 
and then the system is perturbed by a periodic potential, this state, under 
certain conditions, decays as Bessel function of time. Thus the temporal develop- 
ment of the state is very similar to the decay of the motion of a displaced 
particle in the problem of loaded string of infinite length in classical dynamics 
(Schr6dinger, 1914). Consider the motion of a particle of mass m = ½ moving 
under the action of a periodic force 2g cos (nx/L) in a straight line, and sub- 
ject to the boundary conditions 

ff(x = L) = ~(x = - L )  = 0 (4.1) 
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The time-dependent Schrbdinger equation 

i at - 8 - ~  + 2g cos ~ (4.2) 

can be transformed to a differential-difference equation with the expansion of 
~k in terms of the unperturbed set of wave functions 

(w) qan(X ) = L -¼ sin (4.3) 

Thus if Cn(t)'s are the coefficients of the expansion, we have 

. dCn _ n2~ 2 
t d~ L-- Y -  Cn +g(Cn+l + Cn- l )  n = 1, 2 . . . .  (4.4) 

The initial conditions on the solutions of this set are related to the initial state. 
Assuming that at t = 0, 

~(x, 0) = L -{  sin ( L )  (4.5) 

then we have 
C 1 (0)  = 1 ,  Crt(0) = 0, n ¢ 1 (4 .6)  

The stationary solutions of (4.2) are given by the solution of the Mathieu 
equation 

dx----g + k 2 - 2g cos ~ = 0 (4.7) 

with the boundary condition (4.1). From the set of four Mathieu functions, 
we choose the one that is odd about the origin and is even about the point 
x = ½L, since these are the symmetries of the initial wave function. With these 
symmetries, we find if(x, k) to be expressed by the Mathieu function (Morse 
and Feshbach, 1953) 

+m(x, km)=NmSO2m g, cos ~ =N m ~ B ° ( g ,  2m)sin 
n = l  

(4.8) 
where Nm is the normalization constant 

/ 1 Um= L [Bl .e ,  zm)l 2 (4.9) 
n = O  

and where 

2nB(°) n = 1 (4.1 O) 
n 

This solution, as g tends to zero, approaches the limit 

S02m g'+O 
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and the corresponding eigenvalue becomes km= mlr/L. We expand the initial 
wave function 7;(x, 0) in terms of 7;rn(X, kin) 

L-1/2sin(L)=Nm ~ m CmSO2m[g, cos (~)]  (4.12) 

The coefficient of expansion Cm is determined from (4.12), using the ortho- 
gonality of Mathieu functions 

Cm=B°(g, 2m) L [B°n(g,m)] 2 r e = l , 2  . . . .  (4.13) 
=0 

Having found the coefficients as functions of the eigenvalues, we can obtain 
the time evolution of the original state C1 by substituting (4.13)in equation 
(3.8) 

C 1 (t) = ~ e-ik ~t t C1 (kb) t 2 (4.14) 
kb 

where k~ are the eigenvalues of the Mathieu equation associated with the 
eigenfunctions S02m. When L becomes very large (4.4) reduces to the following 
equation 

.dC, 
t =g(Cn+l -Cn-1 )  ( 4 . 1 5 )  

dt 

Changing the function Cm to 

Cm(t) = im-l Jm_l (-2gt ) (4.16) 

we observe that 

dJm-x_ -g(Jm-1 -Jm+l) m = 1, 2 , . . .  (4.17) 
dt 

Therefore in this limit the solution of (4.4) reduces to Bessel function and 
C1 (t) decays as 

C1 (t) = Jo(- 2gt) (4.18) 

A simpler but an unrealistic model is the one in which the matrix elements of 
the Hamiltonian are given by 

n/I 
Hnm = pZ 2 6nm - ig[6n+ l,rn - 6n-l,rn ] (4.19) 

This Hamiltonian corresponds to the first order wave equation for a particle 
of mass ½~, i.e. 

37; 137; ( L )  
- t 2/g sin 7; (4.20) 

td; Ox 3t 

with the boundary condition 

7;(L) = 7;(-L) (4.21) 
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Here the expansion coefficients of ~(x, t) satisfy the SchrSdinger equation 

i dCn = ~ HnmC m (4.22) 
dt m 

From the solution of (4.20), we find the result of integrating (4.22), viz. 

+L 

Cn(t) f exp( 4/gp'L z (Ir2-~2) L ( 2 - ~ L )  ~ ' ~ )  = - -  sin sin x - - dx 
7r 

(4.23) 

For targe values of L the integral in (4.23) can be evaluated in closed form 

lira Cn(t) "> Jn(-2gt)  (4.24) 

So in this limit the initial state Co decays like a Bessel function. 

5. Interacting Systems 

The following model is very similar to the models of Wigner-Weisskopf and 
of Martin. In this model there are two interacting systems. The state of the 
first system is described by the wave function Co(t), which depends only on 
time, and the second system is a particle of mass -~ and the wave function 
if(r, t). The equations of motion of the two systems are: 

and 

a~ + V2 i ~- ~ = gp(OCo(t) (5.1) 

[ i d - p] Co( t) = g S p(r)t~(r , t ) d3r (5.2) 

where g and p are real constants. We assume that p(r) is non zero only within 
a very short range to, and that it is normalized 

~p(r)d3r = 1 (5.3) 

To solve the coupled set of equations we find the Fourier transform of 
equations (5.1) and (5.2) 

Taking ~(r, k) to be 

(k 2 + V~)~(r, k) = gp(r)Co(k) 

( k  2 - p2)Co(k ) = gSp(r)~k(r , k )d3r  

~(r, k) = 1 sin (kr + rl(k)) 

(5.4) 

(5.5) 

(5.6) 
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where r/(k) is the phase shift, then after substitution and some reduction we 
get 

Co(k ) = ~ cos r/+ ~o sin (5.7) 

and 
4n 2 

k cot r/(k) = - ro 1 - ~ -  (k - p) (5.8) 

Now let us assume that at t = 0, the initial conditions are 

Co(0) = 1, ~(r, 0) = 0 (5.9) 

Therefore the quantity 1( Co(0)] Co(t) )[ 2 represents the probability that at 
the time t(t > 0) the state has not decayed. This probability can directly be 
related to the interaction parameters, since from (5.7) and (5.8) it follows that 

where 

( Co(O ) l Co(t)) = ; k 2 exp (-ik 2 t) dk 
e(k 2) 

0 

In the initial state the mean energy of the state Co is given by 

(5.10) 

(5.11) 

f k4dk (5.12) 
(Co(0) lk z ICo(0) ) = ,j e(k2 ) 

o 

Since the integral in (5.12) is divergent, the initial state is not realizable. 
Furthermore, t(Co(0 ) ICo(t)>l 2 has infinite derivative at t = 0, and the 
decay curve exhibits a cusp. If we enclose this system in a large sphere of 
radius L, and assume that the wave function ~(r, t) remains finite inside the 
volume and vanishes on the surface, then we can expand ~(r, t) and p(r) in 
terms of the set of functions sin (mTrx/L) 

and 

~(r, t) = 
1 

X/~-L m 

1__C [ rn~rr'~ 
r m sin ~--~-J (5.13) 

l+'lr m p(r) = 2x/~L ~ sin - -  (5.14) 

The Hamiltonian of the coupled system is given by 

m21r 2 

Hnm = L2 6nm +P6on~om +g(pm~on +Pn~on) (5.15) 
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and the time dependent Schr6dinger equation 
+¢m 

i dCn = HnmCm (5.16) 
dt 

corresponds to equations (5.1) and (5.2). A somewhat similar model, but with 
the delayed action, can be constructed in which both (Co(0)IHICo(O)> and 
(Co(O) IH 2 ICo(0) ) are finite (Razavy, 1967). 

Now let us consider the time-dependent many-body problem. We study two 
simple models to gain some insight into the problem of the decay times and 
periods and their relation to the properties of the forces and the number of  
particles. The Bassichis-Foldy model is a one dimensional many-boson system 
with the Hamiltonian 

Hma~a I + a~a3 + g[at2a2(a~al + at3a3) + a22atla 3 + at22ala3] 

- Fgatlalat3a 3 (5.17) 

where ~t .t an~.t u 1 , u 2 ,  u u 3 are creation operators for the states of positive, zero and 
negative momenta respectively (Bassichis and Foldy, 1964). The dimensionless 
constants g and Fg are the strengths of interactions. This Hamiltonian commutes 
with the following two operators: 

(a) Tile number operator N 

N=a?lal +a~a2 +a~a3 (5.18) 
and 

(b) The difference between the number of particles in the states 1 and 3, 
i . e . ,  

A= a~al -a~a  a (5.19) 

The many-body wave function which describes the evolution of the system 
in time is the solution of the SchrSdinger equation 

~ Hqs (5.20) i~t-= 
This wave function depends on the number of  particles in the three different 
states, or because of the constants of motion N and A, on the number n of 
particles in the state 3. We have different sectors for this model, each sector 
is specified by N and A and an independent wave function ~(N, A, n), where 
n is the eigenvalue of the operator at3a3. The time dependent SchrSdinger 
equation can be transformed to a differential-difference equation by sub- 
stituting H from (5.17) in (5.20) to get 

g[(N-- A - -  2n + 2 ) ( N - A - e n +  l ) (A+n)n]½ Cn-1 

+ A + 2 n + g ( N - - A - - 2 n ) ( A + 2 n ) - - F g n ( n + A ) - - i - d ~  n 

+g[(N - A -- 2n -- 1) (N - A -- 2n) (A + n + 1) (n + 1)] % Cn+l = 0 

(5.21) 
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This set uncouples at n = -~(N - A), and theretbre we set 

C-1 = C~ (N-z0+1 = 0 (5.22) 

For the initial conditions we assume that 

Coq = O) = 1, Cn(t = 0) = 0, n ¢ 0 (5.23) 

In the sector where 

N = A + 2 (5.24) 

the time dependent SchrSdinger equation simplifies to 

N - 2 + 2g(N - 2) - i Co = - g [ 2 ( N  - t)]  -~CI (5.25) 

and 

N - Fg(N - 1) - i ~ -  CI = - g [ 2 ( N  - 1)1 -~ Co (5.26) 

Thus in this sector the quantity t Co [z is the probability of  finding N - 2 
particles in the state 1, and two particles in the state 2 while Cx represents 
the amplitude for having N - 1 particles in the state 1, and one particle in 3. 
By substituting Cn(t) = Cn(oa)e ivat we find the stationary solutions of  
equations (5.25) and (5.26). The eigenvalues of  the problem are given by the 
roots of  the quadratic equation in co 

[ ( N -  2)(1 + 2g) - co] [ N - F g ( N -  1) - co] = 2g2(N - 1) (5.27) 

If  we denote the eigenvectors by Co(cO) and C 1 (cO) we have the normalization 
condition 

c (cO) + = 1 (5.28)  

We are interested in the behaviour o f  the system for targe N, but to find the 
asymptotic form of  the eigenvectors we need to exclude the point where F 
becomes equal to F T 

FT = _ 2 (gN - 2g - 1)/(N - 1) (5.29) 
g 

This point corresponds to the value of F, which makes both of the states of  
the system equally probable, i.e. 

= = ½ ( 5 . 3 0 )  

For all other values o f F ,  and forN>> 1, we have two eigenvalues 

c O + _ ~ N [ ( l + g _ 2 F g ) + g { (  1 + 2 F )  2 + 2 } ½ ]  (5.31) 

and the eigenvectors 

Co2(W_) = C2(co+) = 1 - [2N(1 +½F)21 - t  + . . .  (5.32) 
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and 

C2(co_) = Co2(co+)= [2N(1 + ½F)2] -1 + . . .  (5.33) 

In the last two relations terms proportional to N -2 and higher powers o f N  -i 
have been neglected. From the eigenvalue equation (5.27) it follows that when 
g >  0, and F > F T ,  co_ is less than co+, and thus co_ is the ground state energy 
of the system. Using equations (5.33) and (5.34), we find that C~(co_) > 
C12(co_), and therefore the ground state of the system is the state with two 
particles in the state 2 andN - 2 particles in 1. By taking F < F  T we find that 
co+ < co_, and hence co+ is the ground state energy and C~(co+) represent the 
probability of t~ding the system in its lowest energy state;The time dependent 
states of the system are given by 

Cs(t) = C~(co+)Cs(co+ )e -i~+t + C~(to-)Cs(co-)e -i~°-t, / = O, 1 

(5.34) 

A more interesting case of the model given by (5.17) is the limit when N 
becomes very large and g very small, in such a way that gN remains finite. If 
we look at the sector with A = 0, in this limit, we find that the differential- 
difference equation (5.1) reduces to 

i dCn= 2n(1 +gN)Cn +gN{nCn_l + (n + 1)Cn+l} (5.35) 
dt 

where the index n now can be any nonnegative integer. For the initial conditions 
we assume that at t = 0, only Co is different from zero, i.e. 

Co(t = O) = 1, Cn(t = O) = O, n 4= 0 (5.36) 

To solve this problem let us first consider the solution of the time-dependent 
Schr6dinger equation with the fictitious Harniltonian 

i a . gL [e_i(~xlL) a_ ~ ei(~xlL) t s -s : -  + 7-- t ax- a-7 (5.37) 
/ 

Let us also assume that the boundary and the initial conditions are given by 

and 

!~(L) = ~k(-L) (5.38) 

~(x, t = 0) = (2L)--~ (5.39) 

The wave equation obtained from the Hamiltonian (5.37) is a first order partial 
differential equation 

~-+/'-77-" + ~  - - g s i n [ ~  \ L / ]  Ox get@xlL)~k =0 (5.40) 
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The solution of this equation satisfying the initial condition (5.39) and the 
boundary condition (5.38) is 

~ ( x , t ) = ( 2 L ) - ½ e x p \ - ~  ] coshvt+  +2gL,2,g x 

x sinh ~/tt -1 (5.41) 
] 

where 

7r 2 
72 = g~ - (2/a.L 2)2 (5.42) 

Now if we expand ~(x, t) in terms of the orthogonal set (2L) -1t2 exp(imrx/L), 
i.e. 

O(x,t) = ~ Dn(t)(2L)_ ¼ [inTrx~ 
n=0 exp~-~--] (5.43) 

we find that Dn(t) satisfies the set of equations 

dDn inn 
dt = - gL 2 Dn + g[(n + 1)On+l - nOn_l ] (5.44) 

Note that in (5.43) n is restricted to nonnegative integers. This guarantees that 
the kinetic energy in this model is a positive-definite quantity. To solve 
equation (5.44) for Dn(t), we expand ~(x, t) (5.41) in powers of exp (iTrx/L), 
and compare the result with (5.43). Thus we find 

On(t)= ( g )  n [ iTrt ~ ~[t)n(cosh oxp (sinh 
ig . ~ -n - 1 

+ ~ smh 7t ) 
(5.45) 

When the constants p, L and g are such that the quantity 

7r 2 
6o2 . . . .  g2 (5.46) 

( 2 ~ 2 )  2 

is positive, then Dn(t) is a periodic function of time, i.e. 

(5.47) 

For the critical case ofg  2 = rr2/(2/-tL2) 2 , we have nonexponential damping: 

Dn(t) = eigt(-gt)n(1 + igt) -n - 1  (5.48) 
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Now we return to our original set of equations for Cn, and we compare 
equations (5.35) and (5.44), to find Cn(O 

Cn(t) = inDn(t) = - exp [i(1 +Ng)t] sin n vt x 

x os vt + i(1 + Ng) sin vt 
P 

where 

(5.49) 

I) = (1 + 2Ng)-~ (5.50) 

Thus depending on the sign of g, Cn can be a trigonometric or a hyperbolic 
function of time. For the following many particle Hamiltonian 

H= ig(at22 a3al 2 "t "t - a  z a3al) (5.51) 

which has the same constants of motion N and A as the preceding problem 
(5.18) and (5.19), the time dependent Schr6dinger equation in the limit of 
very large N and for ~ = 0, reduces to 

dCn = Ng[(n + 1)Cn+ 1 - n C n _  1 ] ( 5 .52 )  
dt 

This is a special case of equation (5.44). Thus for this model we have 

t Co(t) 12 = (cosh Ngt) -2 (5.53) 

6. Penetration Through Phase-Equivalent Potential Barriers 

A problem closely related to the decay of an initial state is that of the leak- 
age of  a wave packet through a potential barrier. Let us assume that the initial 
wave packet is ~bo(r ) and the potential barrier is represented by v(r), then 
¢(r, t) (2.8) gives us the amplitude of  the wave at the time t and about the 
point r. The stationary state solution ~(E, r) is the characteristic function of  the 
Hamiltonian 

H = - V  2 + v(r) (6.1) 

with the eigenvalue E. Now suppose that v(r) is replaced by ~(r, r') where 
v(r) and ~(r, r') are phase equivalent, i.e., they give rise to identical set of phase 
shifts for all energies and all partial waves. We may inquire whether the decay 
law is different for the two potentials, if we assume the same initial wave 
packet for the time dependent Schr6dinger equation. In other words we want 
to compare the problem of leakage of a given initial state ~o(r) through two 
different, but phase-equivalent potential barriers. It is intuitively clear that 
for small distances, i.e., points just outside the barrier, the time dependent 
wave function ~(r, t) will be different from ~O(r, t), the latter being the wave 
function for the Hamiltonian with the potential 5(r, r'). The result, for large 
distances from the barrier, however, is nontrivial. 
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There are different ways of constructing phase equivalent potentials, but 
we choose the simplest method, that proposed by Coester et al. (Coester, 
1970), to study the decay law. From a potential ~(r), we can construct 
another phase equivalent nonlocal potential ~(r, r'), using the following 
unitary transformation 

t 

U(r,r') ~ ( r - r ' )  ~ ~ , - ~"  A, = - gt(r)gl(r )Ytm(r)Ytm(r ) (6.2) 
/=0 rn=--I  

where ~ is the unit vector in the direction of r, and gt(r) is a short range 
function of r. The requirement that Uo(r , r') is a unitary operator imposes 
the following condition on gt(r) 

o o  

f gl2(r)r2dr = 2 (6.3) 
o 

The potential ~(r, r') turns out to be a nonlocal operator (Coester, 1970), 

= U(-V 2 + v)U ¢ + V 2 (6.4) 

and the corresponding wave function is related to if(r, E) by the integral 

~(r, E) = S U(r, r')~(r', E)dar  ' (6.5) 

For the simple case where U(r, r') is given by 

U(r, r') = fi(r - r') - l g ( r ) g ( r ' )  (6.6) 

the only partial wave affected by the transformation is the S-wave. Denoting 
the original wave function for zero angular momentum state by u(r) and the 
transformed wave function by ~(r), we find from equation (6.5) that 

o o  

?t(r, E) = u(r , E) - g(r) ~ g(r I )u(r l , E) dr 1 (6.7) 
0 

If we write the time dependent solution (2.8) first for ~'(r, t) and then for 
~(r, t) with the same initial state Co(r), then by subtracting ~(r, t) from u(r, t), 
and by substituting from (6.7), after reduction we get 

° t ;  0 - a(r, t) =  o(r')dr' g(r2)[g(r')a(r, r2, 0 
o I o 

+ g(r)A(r2,/,  t)] dr2 - #.r)g(/) f g(rl )g(r2)A(rl, r2, t) drldr2 
0 

(6.8) 
where ~ o  

A(r, r2, t) = .[ e-iEtu(r, E)u*(r2, E ) d E  (6.9) 
o 

Now let us consider those transformations for which g(r) decreases exponen- 
tially or faster as r tends to infinity, then for large r, we can ignore the second 
and third terms on the right hand side of equation (6.8). Thus for large r, we 
have c o  o o  

u(r, t) - ~(r, t)r--S-~ fA(r, r2, t)g(rz)dr 2 f $o(r')g(r')dr' (6.10) 
o o 
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From this relation, it is easy to show that the current and the density for large 
distances from the barrier will be significantly different for the two potentials. 
For example, if we assume that v(r) = O, i.e., in the absence of any barrier for 
u(r, t), but with a g(r) given by 

4 

g(r) -- exp ( - . ~ r  2) (6.11) 

we fred observable difference between the currents (or the densities) associated 
with u(r, E) and ~(r, E). In this example u(r, E) is the wave function of  a free 
particle 

[2\~ __1 
u(r,E) = [-~) E " sin(E1/2r) (6.12) 

and the propagator A can be found from (6.9), 

A(r, r2, t) -- Orit) -~ exp (r -- exp (r + r2) (6.13) 

By substituting (6.11) and (6.13) in (6.10), we obtain 

u(r, t) - h(r, t)r_ * ) 27rt ~ 

r IF1 [ 3 - r2  ] ; 1 ,  
x i4t/z2 - i )  2 ' 4t(4t# 2 - i )  e-Ur~°(r2)dr2 

0 

- 1 6 ( 1  - i) e(ir214t) t~ ~e_U2r~o(r2)dr2 (6.14) 
2rr r J 

o 

This result may be interpreted in the following way: Since in the penetration 
through a barrier, as formulated in this section, there is considerable overlap 
between the initial wave function and the potential. Therefore, the flow of the 
probability current depends on the shape of  the barrier. Thus, one may con- 
clude that in general the relation between the scattering phase shifts and the 
lifetime and the mode of  decay of an unstable state (or particle) is not unique, 
and, unless other constraints are added to the problem, one can have many 
possible solutions. 
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